Problem set 3

Due date: 11th Feb

Part A (submit any three)

Exercise 19. (1) Show that the family of Normal distributions $\left\{N\left(\mu, \sigma^{2}\right): \mu \in \mathbb{R}\right.$ and $\left.\sigma^{2}>0\right\}$ is not tight.
(2) For what $A \subset \mathbb{R}$ and $B \subset(0, \infty)$ is the restricted family $\left\{N\left(\mu, \sigma^{2}\right): \mu \in A\right.$ and $\left.\sigma^{2} \in B\right\}$ tight?

Exercise 20. Given a Borel p.m. μ on \mathbb{R}, show that it can be written as a convex combination $\alpha \mu_{1}+(1-\alpha) \mu_{2}$ with $\alpha \in[0,1]$, where μ_{1} is a purely atomic Borel p.m and μ_{2} is a Borel p.m with no atoms.

Exercise 21 (Bernoulli convolutions). For any $\lambda>1$, define $X_{\lambda}:[0,1] \rightarrow \mathbb{R}$ by $X(\omega)=\sum_{k=1}^{\infty} \lambda^{-k} X_{k}(\omega)$. Check that X_{λ} is measurable, and define $\mu_{\lambda}=\mathbf{m} X_{\lambda}^{-1}$. Show that for any $\lambda>2$, show that μ_{λ} is singular w.r.t. Lebesgue measure.
Exercise 22. For $p=1,2, \infty$, check that $\|X-Y\|_{p}$ is a metric on the space $L^{p}:=\left\{[X]:\|X\|_{p}<\infty\right\}$ (here $[X]$ denotes the equivalence class of X under the above equivalence relation).
Exercise 23. (1) Give an example of a sequence of r.v.s X_{n} such that $\liminf \mathbf{E}\left[X_{n}\right]<\mathbf{E}\left[\liminf X_{n}\right]$.
(2) Give an example of a sequence of r.v.s X_{n} such that $X_{n} \xrightarrow{\text { a.s. }} X, \mathbf{E}\left[X_{n}\right]=1$, but $\mathbf{E}[X]=0$.
(3) Suppose $X_{n} \geq 0$ and $X_{n} \rightarrow X$ a.s. If $\mathbf{E}\left[X_{n}\right] \rightarrow \mathbf{E}[X]$, show that $\mathbf{E}\left[\left|X_{n}-X\right|\right] \rightarrow 0$.

Part B (submit any two)

Exercise 24 (Alternate construction of Cantor measure). Let $K_{1}=[0,1 / 3] \cup[2 / 3,1], K_{2}=[0,1 / 9] \cup[2 / 9,3 / 9] \cup$ $[6 / 9,7 / 9] \cup[8 / 9,1]$, etc., be the decreasing sequence of compact sets whose intersection is K. Observe that K_{n} is a union of 2^{n} intervals each of length 3^{-n}. Let μ_{n} be the p.m. which is the "renormalized Lebesgue measure" on K_{n}. That is, $\mu_{n}(A):=3^{n} 2^{-n} \mathbf{m}\left(A \cap K_{n}\right)$ for $A \in \mathcal{B}_{\mathbb{R}}$. Then each μ_{n} is a Borel p.m. Show that $\mu_{n} \xrightarrow{d} \mu$, the Cantor measure (which was defined differently in class).
Exercise 25 (A quantitative characterization of absolute continuity). Suppose $\mu \ll v$. Then, show that given any $\varepsilon>0$, there exists $\delta>0$ such that $v(A)<\delta$ implies $\mu(A)<\varepsilon$. (The converse statement is obvious but worth noticing). [Hint: Argue by contradiction].
Exercise 26. (1) Suppose $f:[a, b] \rightarrow \mathbb{R}$ is a Borel measurable function. Then, show that $g(x):=\int_{0}^{x} f(u) d u$ is a continuous function on $[0,1]$.
(2) Let $f:[a, b] \times R \rightarrow \mathbb{R}$ be a bounded function. Assume that $f(x, \theta)$ is Borel measurable in the x for each fixed value of the θ. Assume also that f is continuously differentiable in θ for each fixed value of x. Further assume that $f(x, \theta)$ as well as $\frac{\partial f}{\partial \theta}(x, \theta)$ are uniformly bounded in (x, θ). Then, justify the following "differentiation under integral sign"

$$
\frac{d}{d \theta} \int_{a}^{b} f(x, \theta) d x=\int_{a}^{b} \frac{\partial f}{\partial \theta}(x, \theta) d x
$$

Exercise 27 (Moment matrices). Let $\mu \in \mathcal{P}(\mathbb{R})$ and let $\alpha_{k}=\int x^{k} d \mu(x)$ (assume that all moments exist). Then, for any $n \geq 1$, show that the matrix $\left(\alpha_{i+j}\right)_{0 \leq i, j \leq n}$ is non-negative definite. [Suggestion: First solve $n=1$].

